Черчение сопряжение дуги и окружности заданным радиусом. Сопряжение двух окружностей дугой заданного радиуса

Главная / Оториноларингология

Глава 3. НЕКОТОРЫЕ ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ

§ 14. Общие сведения

При выполнении графических работ приходится решать многие задачи на построение. Наиболее встречающиеся при этом задачи - деление отрезков прямой, углов и окружностей на равные части, построение различных сопряжений прямых с дугами окружностей и дуг окружностей между собой. Сопряжением называют плавный переход дуги окружности в прямую или в дугу другой окружности.

Наиболее часто встречаются задачи на построение следующих сопряжений: двух прямых дугой окружности (скруглением углов); двух дуг окружностей прямой линией; двух дуг окружностей третьей дугой; дуги и прямой второй дугой.

Построение сопряжений связано с графическим определением центров и точек сопряжения. При построении сопряжения широко используются геометрические места точек (прямые, касательные к окружности; окружности, касательные друг к другу). Это объясняется тем, что они основаны на положениях и теоремах геометрии.

10. Вопросы для самопроверки

ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ

15. Какая плоская кривая называется эвольвентой?

15. Деление отрезка прямой

§ 15. Деление отрезка прямой

Чтобы разделить заданный отрезок АВ на две равные части, точки его начала и конца принимают за центры, из которых проводят дуги радиусом, по величине превышающим половину отрезка АВ. Дуги проводят до взаимного пересечения, где получают точки С и D. Линия, соединяющая эти точки, разделит отрезок в точке К на две равные части (рис. 30, а).

Чтобы разделить отрезок АВ на заданное количество равных участков п, под любым острым углом к АВ проводят вспомогательную прямую, на которой из общей заданной прямой точки откладывают п равных участков произвольной длины (рис. 30, б). Из последней точки (на чертеже - шестой) проводят прямую до точки В и через точки 5, 4, 3, 2, 1 проводят прямые, параллельные отрезку 6В. Эти прямые и отсекут на отрезке АВ заданное число равных отрезков (в данном случае 6).

Рис. 30 Деление заданного отрезка АВ на две равные части

Изображение:

16. Деление окружности

§ 16. Деление окружности

Чтобы разделить окружность на четыре равные части, проводят два взаимно перпендикулярных диаметра: на пересечении их с окружностью получаем точки, разделяющие окружность на четыре равные части (рис. 31, а).

Чтобы разделить окружность на восемь равных частей, дуги, равные четвертой части окружности, делят пополам. Для этого из двух точек, ограничивающих четверть дуги, как из центров радиусов окружности выполняют засечки за ее пределами. Полученные точки соединяют с центром окружностей и на пересечении их с линией окружности получают точки, делящие четвертные участки пополам, т. е. получают восемь равных участков окружности (рис. 31, б).

На двенадцать равных частей окружность делят следующим образом. Делят окружность на четыре части взаимно перпендикулярными диаметрами. Приняв точки пересечения диаметров с окружностью А, В, С, D за центры, величиной радиуса проводят четыре дуги до пересечения с окружностью. Полученные точки 1, 2, 3, 4, 5, 6, 7, 8 и точки А, В, С, D разделяют окружность на двенадцать равных частей (рис. 31, в).

Пользуясь радиусом, нетрудно разделить окружность и на 3, 5, 6, 7 равных участков.

Рис. 31 Пользуясь радиусом, нетрудно разделить окружность и на несколько равных участков.

Изображение:

17. Округление углов

§ 17. Скругление углов

Сопряжение двух пересекающихся прямых дугой заданного радиуса называют скруглением углов. Его выполняют следующим образом (рис. 32). Параллельно сторонам угла, образованного данными

прямыми, проводят вспомогательные прямые на расстоянии, равном радиусу. Точка пересечения вспомогательных прямых является центром дуги сопряжения.

Из полученного центра О опускают перпендикуляры к сторонам данного угла и на пересечении их получают точки сопряжения А а В. Между этими точками проводят сопрягающую дугу радиусом R из центра О.

Рис. 32 Сопряжение двух пересекающихся прямых дугой заданного радиуса называют скруглением углов

Изображение:

18. Сопряжение дуг окружностей прямой линией

§ 18. Сопряжение дуг окружностей прямой линией

При построении сопряжения дуг окружностей прямой линией можно рассмотреть две задачи: сопрягаемая прямая имеет внешнее или внутреннее касание. В первой задаче (рис. 33, а) из центра дуги

меньшего радиуса R1 проводят касательную вспомогательной окружности, проведенной радиусом R - RI. Ее точку касания Ко используют для построения точки сопряжения А на дуге радиуса R.

Для получения второй точки сопряжения А 1 на дуге радиуса R 1 проводят вспомогательную линию О 1 А 1 параллельно О А. Точками A и А 1 будет ограничен участок внешней касательной прямой.

Задача построения внутренней касательной прямой (рис. 33, б) решается, если вспомогательную окружность построить радиусом, равным R + R 1 ,

Рис. 33 Сопряжение дуг окружностей прямой линией

Изображение:

19. Сопряжение двух дуг окружностей третьей дугой

§ 19. Сопряжение двух дуг окружностей третьей дугой

При построении сопряжения двух дуг окружностей третьей дугой заданного радиуса можно рассмотреть три случая: когда сопрягающая дуга радиуса R касается заданных дуг радиусов R 1 и R 2 с внешней стороны (рис. 34, а); когда она создает внутреннее касание (рис. 34, б); когда сочетаются внутреннее и внешнее касания (рис. 34, в).

Построение центра О сопрягающей дуги радиуса R при внешнем касании осуществляется в следующем порядке: из центра О 1 радиусом, равным R + R 1 , проводят вспомогательную дугу, а из центра O 2 проводят вспомогательную дугу радиусом R + R 2 . На пересечении дуг получают центр О сопрягаемой дуги радиуса R, а на пересечении радиусом R + R 1 и R + R 2 с дугами окружностей получают точки сопряжения А и А 1 .

Построение центра О при внутреннем касании отличается тем, что из центра О 1 R - R 1 а из центра О 2 радиусом R - R 2 . При сочетании внутреннего и внешнего касания из центра О 1 проводят вспомогательную окружность радиусом, равным R - R 1 , а из центра О 2 - радиусом, равным R + R 2 .

20. Сопряжение дуги окружности и прямой линии второй дугой

§ 20. Сопряжение дуги окружности и прямой линии второй дугой

Здесь может быть рассмотрено два случая: внешнее сопряжение (рис. 35, а) и внутреннее (рис. 35, б). В том и в другом случае при построении сопрягающей дуги радиуса R центр сопряжения О лежит на пересечении геометрических мест точек, равно удаленных от прямой и дуги радиуса R на величину R 1 .

При построении внешнего сопряжения параллельно заданной прямой на расстоянии R 1 в сторону окружности проводят вспомогательную прямую, а из центра О радиусом,равным R + R 1 , - вспомогательную окружность, и на их пересечении получают точку О 1 - центр сопрягающей окружности. Из этого центра радиусом R проводят сопрягающую дугу между точками А и А 1 , построение которых видно из чертежа.

Построение внутреннего сопряжения отличается тем, что из центра О проводят вспомогательную дугу радиусом, равным R - R 1 .

Рис 34 Внешнее сопряжение дуги окружности и прямой линии второй дугой

Изображение:

Рис 35 Внутреннее сопряжение дуги окружности и прямой линии второй дугой

Изображение:

21. Овалы

§21. Овалы

Плавные выпуклые кривые, очерченные дугами окружностей разных радиусов, называют овалами. Овалы состоят из двух опорных окружностей с внутренними сопряжениями между ними.

Различают овалы трехцентровые и многоцентровые. При вычерчивании многих деталей, например кулачков, фланцев, крышек и других, контуры их очерчивают овалами. Рассмотрим пример построения овала по заданным осям. Пусть для четырехцентрового овала, очерченного двумя опорными дугами радиуса R и двумя сопрягающими дугами радиуса r , заданы большая ось АВ и малая ось CD. Величину радиусов R u r надо определить путем построений (рис. 36). Соединим концы большой и малой оси отрезком AС, на котором отложим разность СЕ большой и малой полуосей овала. Проведем перпендикуляр к середине отрезка AF, который пересечет большую и малую оси овала в точках О 1 и О 2 . Эти точки будут центрами сопрягающихся дуг овала, а точка сопряжения будет лежать на самом перпендикуляре.

Рис. 36 Плавные выпуклые кривые, очерченные дугами окружностей разных радиусов, называют овалами

22. Лекальные кривые

§ 22. Лекальные кривые

Лекальными называют плоские кривые, вычерченные с помощью лекал по предварительно построенным точкам. К лекальным кривым относят: эллипс параболу, гиперболу, циклоиду, синусоиду эвольвенту и др.

Эллипс представляет собой замкнутую плоскую кривую второго порядка. Она характеризуется тем, что сумма расстояний от любой ее


Рис. 37

точки до двух точек фокусов есть величина постоянная, равная большей оси эллипса. Построить эллипс можно несколькими способами. Например, можно построить эллипс по его большой АВ и малой CD осям (рис. 37, а). На осях эллипса как на диаметрах строят две окружности, которые можно разделить радиусами на несколько частей. Через точки деления большой окружности проводят прямые, параллельные малой оси эллипса, а через точки деления малой окружности - прямые, параллельные большой оси эллипса. Точки пересечения этих прямых и являются точками эллипса.

Можно привести пример построения эллипса по двум сопряженным диаметрам (рис. 37,б) MN и KL. Сопряженными два диаметра называют, если каждый из них делит пополам хорды, параллельные другому диаметру. На сопряженных диаметрах строят параллелограмм. Один из диаметров MN делят на равные части; на такие же части делят и стороны параллелограмма, параллельные другому диаметру, нумеруя их, как показано на чертеже. Из концов второго сопряженного диаметра KL через точки деления проводят лучи. В пересечении одноименных лучей получают точки эллипса.

Параболой называют незамкнутую кривую второго порядка, все точки которой равно удалены от одной точки - фокуса и от данной прямой - директрисы.

Рассмотрим пример построения параболы по ее вершине О и какой-либо точке В (рис. 38, а). С этой целью строят прямоугольник ОABC и делят его стороны на равные части, из точек деления проводят лучи. В пересечении одноименных лучей получают точки параболы.

Можно привести пример построения параболы в виде кривой, касательной прямой с заданными на них точками А и В (рис. 38, б). Стороны угла, образованного этими прямыми, делят на равные части и ну-

меруют точки деления. Одноименные точки соединяют прямыми. Параболу вычерчивают как огибающую этих прямых.

Гиперболой называют плоскую незамкнутую кривую второго порядка, состоящую из двух веток, концы которых удаляются в бесконечность, стремясь к своим асимптотам. Гипербола отличается тем, что каждая точка ее обладает особым свойством: разность ее расстояний от двух данных точек-фокусов есть величина постоянная, равная расстоянию между вершинами кривой. Если асимптоты гиперболы взаимно перпендикулярны, она называется равнобокой. Равнобокая гипербола широко применяется для построения различных диаграмм, когда задана своими координатами одна точка М (рис. 38, в). В этом случае через заданную точку проводят линии АВ и KL параллельно координатным осям. Из полученных точек пересечения проводят линии, параллельные координатным осям. В их пересечении получают точки гиперболы.

Центр дуги сопряжения должен быть равноудален (находится на одинаковом расстоянии) от каждой из двух сопрягаемых (данных) прямых. Любая из точек сопряжения (точки входа) представляет собой пересечение перпендикуляра, опущенного из центра сопряжения на соответствующую прямую.

Алгоритм построения сопряжения двух прямых дугой заданного радиуса (рис. 13.39, а, б) следующий:

1. На расстоянии (R ), равном радиусу дуги сопряжения, проводятся две прямые, параллельные сопрягаемым прямым.

2. Определяют их точку пересечения, являющуюся центром сопряжения (О ).

3. Из точки (О ) проводят перпендикуляры к заданным прямым и находят точки сопряжения (А ) и (В ).

4. Из точки (А ) к точке (В ) строят дугу сопряжения заданного радиуса (R ).

Рисунок 13.49

Типичными примерами сопряжений являются контуры деталей, изображенных на рис. 13.40.

В AutoCAD сопряжение двух отрезков прямых (рис. ХХ а) выполняется командой «Сопрячь» (Скругление, Шпонка, Fillet) из меню «Модификация». После выбора команды следует параметром «Radius» задать радиус сопряжения (например, 10 мм), затем последовательно указателем мышки отметить оба отрезка (см. рис. ХХ б).

Current settings: Mode = TRIM, Radius = 5.0000

radius

Specify fillet radius <5.0000>: 10

Select first object or :

Select second object:

Полученный элемент состоит из двух исходных отрезков и дуги сопряжения R=10мм (см. рис. ХХ в).

Рис. ХХ а) Рис. ХХ б) Рис. ХХ в)

1.2. Сопряжение дуги окружности радиуса R и прямой а с дугой заданного радиуса R1

Для выполнения этого сопряжения (рис. 3.31) сначала определяют множество центров дуг радиуса R 1 . Для этого на расстоянии R 1 от прямой а проводят параллельную ей прямую m , а из центра О радиусом (R + R 1 ) – дуги концентрической окружности. Точка О 1 будет центром дуги сопряжения. Точка сопряжения С получена на перпендикуляре, опущенном из точки О 1 на прямую а , а точка В – на прямой, соединяющей точки О и О 1 .

Рисунок 3.31

На рис. 3.32 представлен пример изображения контура подшипника, в построении которого использован рассмотренный вид сопряжений.

Рисунок 3.32

Сопряжение прямой и окружности в AutoCAD имеет смысл при построении к окружности отрезка прямой, являющейся касательной к этой окружности. Для этого при построении отрезка начальную точку отрезка задают по координатам или объектной привязкой, конечную точку задают привязкой «Касательная» (Прыжок в тангенс) относительно окружности (работа с привязкой описана в приложении ХХХХХХХХХХХ).


1.3. Сопряжение дуг двух окружностей с радиусами R1 и R2 , дугой сопряжения радиуса R

Различают внешнее (рис. 13.42,а), внутреннее (рис. 13.42, б) и смешанное (рис. 13.42, в) сопряжения. В первом случае центр сопряжения является точкой пересечения дуги окружностей радиусов R 1 +R и R 2 +R, во втором - на пересечении окружностей радиусов R-R 1 и R-R 2 , в третьем - на пересечении дуг окружностей радиусов R+R 1 и R-R 2 . Точки сопряжения А 1 и А 2 лежат на прямых, соединяющих центр сопряжения с центром соответствующей окружности.

Рассмотрим случай внешнего сопряжения двух окружностей в AutoCAD. На рис. ХХ.а показаны две опорные окружности с радиусами R 1 и R 2 , центры которых лежат на концах пунктирной линии. Из центра окружности R 1 строят вспомогательную окружность с радиусом R 1 +R, а из центра окружности R 2 – окружность R 2 +R как это показано на рис. ХХ.б (вспомогательные окружности показаны штриховой линией). Затем из точки пересечения вспомогательных окружностей строят окружность с радиусом R (на рис. ХХ в показана штрих-пунктирной линией). Окончательные построения выполняют с помощью команды «Обрезать» из меню «Модификация». В качестве секущих объектов выбирают опорные окружности и обрезают верхнюю часть окружности R, затем удаляют вспомогательные окружности (результат построения показан на рис. ХХ.г).

Рисунок ХХ.а Рисунок ХХ.б

Рисунок ХХ.в Рисунок ХХ.г

Теперь рассмотрим случай внутреннего сопряжения двух окружностей в AutoCAD. Аналогично предыдущему случаю строят опорные окружности с радиусами R 1 и R 2 . Из центра окружности R 1 строят вспомогательную окружность с радиусом R–R 1 , а из центра окружности R 2 – окружность R–R 2 . Затем из точки пересечения вспомогательных окружностей строят окружность с радиусом R (см. рис. ХХХ.а). Лишние элементы удаляют аналогично предыдущему случаю (результат показан на рис. ХХХ.б).


      Для грамотного и уверенного построения чертежей и изготовления графических дизайнерских работ, дизайнеру следует знать основные законы геометрических построений. Приводимые ниже примеры легко освоить на практике, применяя для построений циркуль и линейку или (на компьютере) любой векторный графический редактор.
Деление угла пополам
Из вершины А данного угла, как из центра провести дугу произвольного радиуса R, которая пересечет стороны угла в точках C,B (Шаг 1).
Из точки B, как из центра тем же радиусом R провести дугу (Шаг 2).

Из точки С, как из центра тем же радиусом R провести дугу до пересечения в точке D (Шаг 3).
Прямая, соединяющая точки A и D - искомая биссектриса (Шаг 4).

Деление прямого угла на 3 равные части
Из вершины прямого угла А, как из центра, следует провести дугу BC, произвольного радиуса R (Шаг 1).
Из точки B, как из центра, провести дугу, тем же радиусом R, до пересечения с дугой BC в точке D (Шаг 2).

Из точки C, как из центра, провести дугу, тем же радиусом R, до пересечения с дугой BC в точке E (Шаг 3).
Из точки А провести линии AD и AE (Шаг 4), которые и делят прямой угол BAC на три равных между собой угла BAE, EAD и DAC. Деление дуги окружности пополам
Из концов дуги АВ следует провести дуги радиусом R большим либо равным 1/2 длинны хорды АВ, которые пересекаются в точках M и N (Шаг 1).
Прямая, проведенная через точки M и N делит дугу и ее хорду АВ пополам и проходит через ее центр О (Шаг 2).
Деление окружностей. Построение квадрата.
Первый способ построения (Рис. 1). Проводим в окружности вертикальный и горизонтальный диаметры (Шаг 1).
Точки пересечения этих диаметров с окружностью являются вершинами квадрата (Шаг 2).

Второй способ построения (Рис. 2). Как и в первом способе проводим в окружности вертикальный и горизонтальный диаметры. Из точек пересечения диаметров с окружностью строим дуги с радиусом R, равным радиусу окружности (Шаг 1).
Точки пересечения дуг EG и FH соединяем соответственно линиями (Шаг 2). Точки пересечения этих линий с окружностью и являются вершинами квадрата.
Деление окружностей. Построение правильного шестиугольника.
В окружности радиуса R следует провести вертикальный диаметр (Шаг 1).
Из нижней точки пересечения диаметра с окружностью, как из центра следует провести дугу радиусом R (Шаг 2).

Аналогично, из верхней точки пересечения диаметра с окружностью следует провести дугу радиусом R (Шаг 3).
Соединяем все точки пересечения на окружности и в итоге получаем правильный шестиугольник (Шаг 4).

Деление окружностей. Построение равностороннего треугольника.
В окружности радиуса R (Шаг 1) следует провести вертикальный диаметр.
Из нижней точки пересечения диаметра с окружностью, как из центра, тем же радиусом R следует провести дугу до пересечения с окружностью в точках C и B (Шаг 2).

Точки A,B и C на окружности являются вершинами равностороннего треугольника (Шаг 3).

Деление окружностей. Построение правильного пятиугольника.
Провести в окружности радиусом R два перпендикулярных диаметра (Шаг 1).
Из точек A и B , как из центра, следует провести две дуги радиусом R, до пересечения с окружностью (Шаг 2).

Длинна отрезков CE = CF = L является длинной стороны правильного пятиугольника. Четырьмя дугами радиусом L следует сделать засечки на окружности (Шаг 3).
Точка С и точки пересечения дуг с окружностью являются вершинами правильного пятиугольника (Шаг 4).

Деление окружностей. Построение правильного семиугольника.
Сторона правильного семиугольника приближенно равна 1/2 стороны правильного треугольника. Поэтому сначала следует построить основание правильного треугольника (Шаг 1).
Основание правильного треугольника AB делится пополам в точке С вертикальным диаметром окружности (Шаг 2). Длинна отрезка z = AC является длиной стороны правильного семиугольника.

Радиусом дуги равным z следует сделать на окружности засечки, как показано на рисунке (Шаг 3). Построения лучше начинать из верхней точки D.
Из точки D, последовательно следует соединить все точки пересечения дуг с окружностью. В итоге получаем правильный семиугольник (Шаг 4).

Сопряжения. Точка сопряжения.
Сопряжением называется такое соединение двух линий, при котором обеспечивается плавный переход одной линии в другую. Точка плавного перехода называется точкой сопряжения.

В точке сопряжения N прямой и окружности прямая является касательной к окружности. Две окружности в точке сопряжения имеют общую касательную. Точка сопряжения и центры касающихся окружностей лежат на одной прямой - точки O1, N1, O или точки O, O2, N2.

Сопряжение двух параллельных прямых дугой полуокружности.
Проведем прямую 3, перпендикулярную параллельным прямым 1 и 2 (Шаг 1).
Делим отрезок AB пополам (Шаг 2).

Проводим дугу полуокружности радиуса R = AO = OB, которая плавно соединяет данные параллельные прямые (Шаг 3).

Скругление прямого угла дугой радиуса R
Дан прямой угол и радиус дуги R (Шаг 1).
Из вершины угла, как из центра, проводим дугу данного радиуса R, которая пересекает стороны угла в точках B и C (Шаг 2).

Из точек В и С, как из центров, проводим дуги радиуса R до их пересечения в точке D (Шаг 3).
Дуга радиуса DB = R, проведенная между точками С и В, скругляет данный прямой угол (Шаг 4).

Скругление острого угла дугой радиуса R
Дан острый угол между прямыми 1 и 2 и радиус дуги R (Шаг 1).
Проведем прямые 3 и 4, соответственно параллельные сторонам 1 и 2 угла, на расстоянии R от них (Шаг 2).

Опустим перпендикуляры из точки О на стороны угла (Шаг 3).
Основания перпендикуляров В и С - это точки сопряжения. Проведем дугу ВС радиуса ОВ = R, которая скругляет данный угол (Шаг 4).

Сопряжение двух окружностей дугой данного радиуса R (1-й случай)
Проведем радиусами R1+R и R2+R две дуги 1 и 2, концентрические данным окружностям (Шаг 1).
Пересечение дуг 1 и 2 определяет центр сопряжения О. Проведем прямые ОО1 и ОО2, пересекающие данные окружности в точках сопряжения А1 и А2 (Шаг 2).

Из центра О радиусом ОА1 проведем дугу А1А2 (Шаг 3), которая плавно соединяет данные окружности.

Сопряжение двух окружностей дугой данного радиуса R (2-й случай)
Проведем радиусами R1-R и R2+R две дуги 1 и 2, концентрические данным окружностям. Пересечение дуг 1 и 2 определяет центр сопряжения О. Проведем прямые ОО1 и ОО2, пересекающие данные окружности в точках сопряжения А1 и А2 (Шаг 1).

Из центра О радиусом ОА1 проведем дугу А1А2, которая плавно соединяет данные окружности (Шаг 2).

Сопряжение прямой и окружности радиуса R дугой данного радиуса r (1-й случай)
Проведем прямую 3 параллельно прямой 1 на расстоянии r от нее и из центра О дугу 2 радиусом R+r (Шаг 1).


Проводим дугу АВ из центра О1 радиусом r, которая плавно соединяет прямую 1 и окружность радиуса R (Шаг 3).

Сопряжение прямой и окружности радиуса R дугой данного радиуса r (2-й случай r > R)
Проведем прямую 3 параллельно прямой 1 на расстоянии r от нее и из центра О дугу 2 радиусом r - R (Шаг 1).
Точка О1 пересечения дуги 2 и прямой 3 есть центр дуги радиуса r. Определим точки сопряжения А и В, опустив перпендикуляр из О1 на прямую 1 и соединив центры О и О1(Шаг 2).

Проводим дугу АВ из центра О1 радиусом r, которая плавно соединяет прямую 1 и окружность радиуса R (Шаг 3).

Плавный переход прямой линии в дугу или одной дуги в другую называют сопряжением. Для построения сопряжения надо найти центры, из которых проводят дуги, т. е. центры сопряжений (рис. 63). Затем нужно найти точки, в которых одна линия переходит в другую, т. е. точки сопряжений. При построении контура изображения сопрягающиеся линии нужно доводить точно до этих точек. Точка сопряжения лежит на перпендикуляре, опущенном из центра О дуги на сопрягаемую прямую (рис. 64, а), или на линии О 1 О 2 , соединяющей центры сопрягаемых дуг (рис. 64, б). Следовательно, для построения любого сопряжения дугой заданного радиуса нужно найти центр сопряжения и точку сопряжения.

Сопряжение двух пересекающихся прямых дугой заданного радиуса. Даны пересекающиеся под прямым, острым и тупым углами прямые линии (рис. 65, а). Нужно построить сопряжения этих прямых дугой заданного радиуса R.

Для всех трех случаев применяют общий способ построения.

1. Находят точку О - центр сопряжения, который должен лежать на расстоянии R от сторон угла в точке пересечения прямых, проходящих параллельно сторонам угла на расстоянии R от них (рис. 65, б).

Для построения прямых, параллельных сторонам угла, из произвольных точек, взятых на прямых, раствором циркуля, равным R, делают засечки и к ним проводят касательные.

2. Находят точки сопряжений (рис. 65, в). Для этого опускают перпендикуляры из точки О на заданные прямые.

3. Из точки О, как из центра, описывают дугу заданного радиуса R между точками сопряжений (рис. 65, в).

Сопряжение двух параллельных прямых. Заданы две параллельные прямые и на одной из них точка сопряжения т (рис. 66, а). Требуется построить сопряжение.

Построение выполняют следующим образом:

1. Находят центр сопряжения и радиус дуги (рис. 66, б). Для этого из точки m на одной прямой восставляют перпендикуляр до пересечения с другой прямой в точке п. Отрезок делят пополам (см. рис. 56).

2. Из точки О - центра сопряжения радиусом Оm = Оn описывают дугу до точек сопряжения тип (рис. 66, в).

Проведение касательной к окружности. Задана окружность с центром О и точка А (рис. 67, а). Требуется провести из точки А касательную к окружности.

1. Точку А соединяют прямой с заданным центром О окружности.

Строят вспомогательную окружность диаметром, равным ОА (рис. 67, а). Чтобы найти центр О 1 делят отрезок ОА пополам (см. рис. 56).

2. Точки m и n пересечения вспомогательной окружности с заданной - искомые точки касания. Точку А соединяют прямой с точками m или n (рис. 67, б). Прямая Am будет перпендикулярна к прямой Оm, так как угол АmО опирается на диаметр.

Проведение прямой, касательной к двум окружностям. Заданы две окружности радиусом R и R 1 . Требуется построить касательную к ним.

Различают два случая касания: внешнее (рис. 68, б) и внутреннее (рис. 68, в).

При внешнем касании построение выполняют следующим образом:

1. Из центра О проводят вспомогательную окружность радиусом, равным разности радиусов заданных окружностей, т. е. R - R 1 (рис. 68, а). К этой окружности из центра О 1 проводят касательную Оm. Построение касательной показано на рис. 67.

2. Радиус, проведенный из точки О в точку n, продолжают до пересечения в точке m с заданной окружностью радиусом R. Параллельно радиусу Оm проводят радиус 0 1 р меньшей окружности. Прямая, соединяющая точки сопряжений m и р,- касательная к заданным окружностям (рис. 68, б).

При внутреннем касании построение проводят аналогично, но вспомогательную окружность проводят радиусом, равным сумме радиусов R + R 1 (см. рис. 68, в). Затем из центра O 1 проводят касательную к вспомогательной окружности (см. рис. 67). Точку n соединяют радиусом с центром О. Параллельно радиусу On проводят радиус O 1 р меньшей окружности. Искомая касательная проходит через точки сопряжений m и р.

Сопряжение дуги и прямой линии дугой заданного радиуса. Заданы дуга окружности радиусом R и прямая. Требуется соединить их дугой радиусом R 1 .

1. Находят центр сопряжения (рис. 69, а), который должен находиться на расстоянии R 1 от дуги и от прямой. Такому условию соответствует точка пересечения прямой линии, параллельной заданной прямой, проходящей от нее на расстоянии R 1 , и вспомогательной дуги, отстоящей от заданной также на расстоянии R 1 . Поэтому проводят вспомогательную прямую, параллельную заданной прямой, на расстоянии, равном радиусу сопрягающей дуги R 1 (рис. 69, а). Раствором циркуля, равным сумме заданных радиусов R + R 1 , описывают из центра О дугу до пересечения с вспомогательной прямой. Полученная точка O 1 - центр сопряжения.

2. По общему правилу находят точки сопряжения (рис. 69, б). Соединяют прямой центры сопрягаемых дуг O 1 и О. Опускают из центра сопряжения O 1 перпендикуляр на заданную прямую.

3. Из центра сопряжения O 1 между точками сопряжения m и n проводят дугу, радиус которой равен R 1 (см. рис. 69, б).

Сопряжение двух дуг окружности дугой заданного радиуса. Заданы две дуги радиусами R 1 и R 2 . Требуется построить сопряжение дугой, радиус которой задан.

Различают два случая касания: внешнее (рис. 70, б) и внутреннее (рис. 70, в). В обоих случаях центры сопряжений должны быгь расположены на расстоянии, равном радиусу дуги сопряжения, от заданных дуг. По общему правилу на прямых, соединяющих центры сопрягаемых дуг, находят точки сопряжения.

Ниже приведен порядок построения для внешнего и внутреннего касаний.

Для внешнего касания. 1. Из центров O 1 и О 2 раствором циркуля, равным сумме радиусов заданной и сопрягающей дуг, проводят вспомогательные дуги (рис. 70, а); радиус дуги, проведенной из центра O 1 , равен R + R 3 , а радиус дуги, проведенной из центра O 2 , равен R 2 + R 3 . На пересечении вспомогательных дуг расположен центр сопряжения - точка О 3 ,.

2. Соединив прямыми точку O 1 с точкой O 3 и точку O 2 с точкой O 3 , находят точки сопряжения m и n (см. рис. 70, б),

3. Из точки О 3 раствором циркуля, равным R 3 , между точками m и n описывают сопрягающую дугу.

Для внутреннего касания выполняют те же построения, но радиусы дуг берут равными разности радиусов сопрягающей и заданной дуг, т.е. R 4 -R 1 и R 4 -R 2 . Точки сопряжения р и k лежат на продолжении линий, соединяющих точку О 4 с точками O 1 и O 2 .

Записи в тетради фиолетовый цвет, желтый фон – пояснения

Читаем понимаем, то что черный шрифт

Делаем то, что не сделано в тетради, если ее нет, то на А4 - форматах, что бы вклеить в тетрадь

Тема. Сопряжения.

Значение сопряжений в техническом черчении

Графическая работа № 5. Чертёж технической детали с применением сопряжений. Формат А4 (210 × 297).

Плавный переход одной линии в другую называется сопряжением. Общая для сопрягаемых линий точка называется точкой сопряжения, или точкой перехода. Для построения сопряжений надо найти центр сопряжения и точки сопряжений. Рассмотрим различные типы сопряжений.

Сопряжение прямого угла. Пусть необходимо выполнить сопряжение прямого угла радиусом сопряжения, равным отрезку АВ (R=AB). Найдем точки сопряжения. Для этого поставим ножку циркуля в вершину угла и раствором циркуля, равным отрезку АВ, сделаем засечки на сторонах угла. Полученные точки а и b являются точками сопряжения. Найдем центр сопряжения - точку, равноудаленную от сторон угла. Раствором циркуля, равным радиусу сопряжения, из точек а и b проведем внутри угла две дуги до пересечения друг с другом. Полученная точка О - центр сопряжения. Из центра сопряжения описываем дугу заданного радиуса от точки а до точки Ь. Обводим вначале дугу, а затем прямые линии

Сопряжение острого и тупого углов .

Чтобы построить сопряжение острого угла, возьмем раствор циркуля, равный заданному радиусу R=AB. Поочередно поставим ножку циркуля в двепроизвольные точки на каждой из сторон острого углса. Проведем четыре дуги внутри угла, жак показано на ргас. 71, а. К ним проведем две касательные до пересечения в точке О - центре сопряжения (рис. 71, б)- Из центра сопряжения опустим перпендикуляры на стороны угла. Полученные точки а и b будут точками сопряжения (рис. 71, б). Поставив ножку циркуля в центр сопряжения (О), раствором циркуля, равным заданному радиусу сопряжения (R=AB), проведем дугу сопряжения.

Сопряжение двух параллельных прямых.

Заданы две параллельные прямые и точка d, лежащая на одной из них (рис.72). Рассмотрим последовательность построения сопряжения двух прямых. В точке d восставим перпендикуляр до пересечения его с другой прямой. Точки d и е являются точками сопряжения. Разделив отрезок de пополам, найдем центр сопряжения. Из него радиусом сопряжения проводим дугу, сопрягающую прямые.

Сопряжение дуг двух окружностей дугой заданного радиуса.

Существует несколько типов сопряжения дуг двух окружностей дугой заданного радиуса: внешнее, внутреннее и смешанное.

Построение внутреннего сопряжения .

а). радиусы сопрягаемых окружностей R1 и R2;

б). расстояние l1 и l2 между центрами этих дуг;

в). радиус R сопрягающей дуги.

Требуется:

б).найти точки сопряжения s1 и s2;

в).провести дугу сопряжения.

По заданным расстояниям между центрами l1 и l2 на чертеже намечают центры О и О1, из которых описывают сопрягаемые дуги радиусов R1 и R2. Из центра О1 проводят вспомогательную дугу окружности радиусом, равным разности радиусов сопрягающей дуги R и сопрягаемой R2, а из центра О -радиусом, равным разности радиусов сопрягающей дуги R и сопрягаемой R1. Вспомогательные дуги пересекутся в точке О2, которая и будет искомым центром сопрягающей дуги.

Для нахождения точек сопряжения точку О2 соединяют с точками О и О1 прямыми линиями. Точки пересечения продолжения прямых О2О и О2О1 с сопрягаемыми дугами являются искомыми точками сопряжения(точки s и s1).

Радиусом R из центра О2 проводят сопрягающую дугу между точками сопряжения s и s1.


Построение внешнего сопряжения.

б).расстояние l1 и l2 между центрами этих дуг;

в).радиус R сопрягающей дуги.

Требуется:

а).определить положение центра О2 сопрягающей дуги;

в).найти точки сопряжения s и s1;

в).провести дугу сопряжения.

Построение внешнего сопряжения показано на рис. 18,б. По заданным расстояниям между центрами l1 и l2 на чертеже находят точки О и О1, из которых описывают сопрягаемые дуги радиусов R1 и R2. Из центра О проводят вспомогательную дугу окружности радиусом, равным сумме радиусов сопрягаемой дуги R1 и сопрягающей R, а из центра О1 -радиусом, равным сумме радиусов сопрягаемой дуги R2 и сопрягающей R. Вспомогательные дуги пересекутся в точке О2, которая будет искомым центром сопрягающей дуги.

Для нахождения точек сопряжения центры дуг соединяют прямыми линиями ОО2 и О2О2. Эти две прямые пересекают сопрягаемые дуги в точках сопряжения s и s1. Из центра О2 радиусом R проводят сопрягающую дугу, ограничивая ее точками сопряжения s1 и s.

Построение смешанного сопряжения .

а).радиусы R1 и R2 сопрягаемых дуг окружностей;

б).расстояния l1 и l2 между центрами этих дуг;

в).радиус R сопрягающей дуги.

Требуется:

а).определить положение центра О2 сопрягающей дуги;

б).найти точки сопряжения s и s1;

в).провести дугу сопряжения.

По заданным расстояниям между центрами l1 и l2 на чертеже намечают центры О и О1, из которых описывают сопрягаемые дуги радиусов R1 и R2. Из центра О проводят вспомогательную дугу окружности радиусом, равным сумме радиусов сопрягаемой дуги R1 и сопрягающей R, а из центра О1 -радиусом, равным разности радиусов R и R2. Вспомогательные дуги пересекутся в точке О2, которая будет искомым центром сопрягающей дуги.

Соединив точки О и О2 прямой, получают точку сопряжения s1; соединив точки О1 и О2, находят точку сопряжения s. Из центра О2 проводят дугу сопряжения от s до s1.

При вычерчивании контура детали необходимо разобраться, где имеются плавные переходы, и представить себе, где надо выполнить те или иные виды сопряжения.

Для приобретения навыков построения сопряжения выполняют упражнения по вычерчиванию контуров сложных деталей. Перед упражнением необходимо просмотреть задание, наметить порядок построения сопряжений и только после этого приступить к выполнению построений.

Тема Лекальные кривые.

Общие сведения. Правила пользования лекалом. Построение лекальных кривых: эллипса, параболы, гиперболы, циклоиды, синусоиды, эвольвенты, Спирали Архимеда.Практическая работа. Упражнение на построение лекальных кривых

Коробовые кривые линии.

Некоторые детали машин, инструменты для обработки металлов имеют контуры, ограниченные замкнутыми кривыми линиями, состоящими из взаимно сопрягающихся дуг окружностей различных диаметров.

Коробовыми кривыми называются кривые, образованные сопряжением дуг окружностей. К таким кривым относятся овалы, овоиды, завитки.

Построение овала.

Овал- замкнутая коробовая кривая, имеющая две оси симметрии.

Последовательность построения овала по заданному размеру большой оси овала АВ производят следующим образом (рис. ,а). Ось АВ делят на три равные части (АО1, О1О2, О2В). Радиусом, равным О1О2, из точек деления О1 и О2 проводят окружности, пересекающиеся в точках m и n.

Соединив точки n и m с точками О1 и О2, получают прямые nО1, nО2, mО1, mО2, которые продолжают до пересечения с окружностями. Полученные точки 1,2,3, и 4 являются точками сопряжения дуг. Из точек m и n, как из центров, радиусом R1, равным n2 и m3, проводят верхнюю дугу 12 и нижнюю дугу 34.

Проводят оси АВ и СD. Из точки их пересечения радиусом ОС(половина малой оси овала) проводят дугу до пересечения с большой осью овала АВ в точке N. Точку А соединяют прямой с точкой С и на ней от точки С откладывают отрезок NB, получают точку N. В середине отрезка AN1 восставляют перпендикуляр и продолжают его до пересечения с большой и малой осями овала в точках О1 и n. Расстояние ОО1 откладывают по большой оси овала вправо от точки О, а расстояние on от точки О откладывают по малой оси овала вверх, получают точки n1 и О2. Точки n и n1 являются центрами верхней дуги 12 и нижней дуги 34 овала, а точки О1 и О2-центрами дуг 13 и 24. Получают искомый овал.

Построение завитков.

Завиток- плоская спиральная кривая, вычерчиваемая циркулем путем сопряжения дуг окружностей.

Построение завитков выполняют при вычерчивании таких деталей, как пружины и спиральные направляющие.

Построение овоида.

Овоид- замкнутая коробовая кривая,имеющая только одну ось симметрии. Радиусы R и R1 дуг окружностей, центры которых лежат на оси симметрии овоида, не равны друг другу.

Построение овоида по заданной оси АВ выполняется в следующей последовательности.

Проводят окружность диаметром, равным оси АВ овоида. Из точек А и В через точку О1(точка пересечения окружности радиуса R с осью симметрии) проводят прямые. Из точек А и В, как из центров, радиусом R2, равным оси АB, проводят дуги An и Bm, а из центра О1 радиусом R1 проводят малую дугу овоида nm.

Построение завитков выполняется из двух, трех и более центров и зависит от формы и размеров «глазка», который может быть окружностью, правильным треугольником, шестиугольником и т.п. Последовательность построения завитка следующая.

Вычерчивается в тонких линиях контур «глазка», например окружность с диаметром О1О2. Из точек О1 и О2, как из центров, проводят две сопряженные между собой полуокружности. Верхняя полуокружность О21 из центра О1, нижняя полуокружность 12 из центра О2. Получается искомый завиток.

Лекальные кривые.

При выполнении чертежей часто приходится прибегать к вычерчиванию кривых, состоящих из ряда сопряженных частей, которые невозможно провести циркулем. Такие кривые строят обычно по ряду принадлежащих им точек, которые затем соединяют плавной линией сначала от руки карандашом, а затем обводят при помощи лекал.

Рассматриваемые лекальные кривые располагаются в одной плоскости и называются поэтому плоскими.

Лекальные кривые широко применяются в машиностроении для очертания различных технических деталей, например: кронштейнов, ребер жесткости, кулачков, зубчатых колес, фасонного инструмента и т.п.

К лекальным кривым относят эллипс, параболу, гиперболу, циклоиду, эпициклоиду, эвольвенту, синусоиду, спираль Архимеда и др.

Ниже рассмотрены способы построения кривых, наиболее часто встречающихся в технике.

Построение эллипса.

Эллипс- замкнутая плоская кривая, сумма расстояний каждой точки которой до двух данных точек(фокусов), лежащих на большой оси, есть величина постоянная и равная длине большой оси.

Широко применяемый в технике способ построения эллипса по большой(АВ) и малой(СD) осям.

Проводят две перпендикулярные осевые линии. Затем от центра О откладывают вверх и вниз по вертикальной оси отрезки, равные длине малой полуоси, а влево и вправо по горизонтальной оси-отрезки, равные длине большой полуоси.

Из центра О радиусами ОА и ОС проводят две концентрические окружности и ряд лучей-диаметров. Из точек пересечения лучей с окружностями проводят линии, параллельные осям эллипса, до взаимного пересечения в точках, принадлежащих эллипсу. Полученные точки соединяют от руки и обводят по лекалу.

Построение параболы.

Парабола- плоская кривая, каждая точка которой равноудалена от директрисы DD1 прямой, перпендикулярной к оси симметрии параболы, и от фокуса F-точки, расположенной на оси симметрии параболы.

Расстояние KF между директрисой и фокусом называется параметром p параболы. Точка О, лежащая на оси симметрии, называется вершиной параболы и делит параметр p пополам.

Для построения параболы по заданной величине параметра p проводят ось симметрии параболы(на рисунке вертикально) и откладывают отрезок KF=p. Через точку K перпендикулярно оси симметрии проводят директрису DD1. Отрезок KF делят пополам и получают вершину О параболы. От вершины О вниз на оси симметрии намечают ряд произвольных точек I-IV с постепенно увеличивающимся расстоянием между ними. Через эти точки проводят вспомогательные прямые, перпендикулярные оси симметрии. На вспомогательных прямых из фокуса F делают засечки радиусом, равным расстоянию от прямой до директрисы. Например, из точки F на вспомогательной прямой, проходящей через точки V, делают засечку дугой R1=KV; полученная точка 5 принадлежит параболе.

В станкостроении и других отраслях машиностроения часто применяются детали, контурные очертания которых выполнены по параболе, например, стойка и рукав радиально-сверлильного станка.

Построение синусоиды .

Синусоида- плоская кривая, изображающая изменение синуса в зависимости от изменения угла.

Величина L называется длиной волны синусоиды, L=ПR.

Для построения синусоиды проводят горизонтальную ось и на ней откладывают заданную длину АВ (рис. 24), Отрезок АВ делят на несколько равных частей, например, на 12. Слева вычерчивают окружность, радиус которой равен величине амплитуды, и делят её также на 12 равных частей; точки деления нумеруют и через них проводят горизонтальные прямые. Из точек деления отрезка АВ восставляют перпендикуляры к оси синусоиды и на их пересечении с горизонтальными прямыми находят точки синусоиды.

Полученные точки синусоиды а1, а2, а3,...соединяют по лекалу кривой.

При выполнении чертежей деталей или инструментов, поверхности которых очерчены по синусоиде, величину длины волны АВ обычно выбирают независимо от размера амплитуды r. Например, при вычерчивании шнека длина волны L меньше размера 2Пr. Такая синусоида называется сжатой. Если длина волны больше размера 2Пr, то синусоида называется вытянутой.

Построение гиперболы.

Гипербола- плоская кривая, состоящая из двух разомкнутых, симметрично расположенных ветвей(рис. 25). Разность расстояний от каждой точки гиперболы до двух данных точек(фокусов F и F1) есть величина постоянная и равная расстоянию между вершинами гиперболы А и В.

Рассмотрим прием построения гиперболы по заданным вершинам А и В и фокусному расстоянию FF1

Разделив фокусное расстояние FF1 пополам, получают точку О, от которой в обе стороны откладывают по половине заданного расстояния между вершинами А и В. Вниз от фокуса F намечают рад произвольных точек 1,2,3,4...с постепенно увеличивающимся расстоянием между ними. Из фокуса F описывают дугу вспомогательной окружности радиусом R, равным, например, расстоянию от вершины гиперболы В до точки 3. Из фокуса F1 проводят вторую дугу вспомогательной окружности радиусом r, равным расстоянию от вершины А до точки 3. На пересечении этих дуг находят точки С и С1, принадлежащие гиперболе. Таким же способом находят остальные точки гиперболы.



© 2024 plastika-tver.ru -- Медицинский портал - Plastika-tver